
 

 

 

Abstract— The generalized Lindley distribution offers an important 

and a reliable tool for modelling and testing lifetime data. In this 

paper, the Bayesian analysis of generalized Lindley distribution model 

is considered under type II censured data. Bayes estimator and 

corresponding risks were derived using different loss functions such us  

squared error loss (SELF), Linex loss (LF) and entropy loss function 

(EF). We define two criteria which are the Pitman closeness criterion 

and the integrated mean square error (IMSE) to compare the Bayesian 

and the maximum likelihood estimators (MLE). A  real  data  example  

is  given  for  illustration. 
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I. INTRODUCTION 

HE Lindley distribution was originally proposed by Lindley 

[13] in the context of Bayesian statistics, as a counter 

example of fiducial statistics which can be seen that as a 

mixture of Exp (θ) and gamma(2,θ). More details on the 

Lindley distribution can be found in Ghitany et al. [7]. A 

random variable X is said to have Lindley distribution with a 

parameter if its probability density function is defined as: 

                   

M.E. Ghitany and co-workers have discussed various 

properties of this distribution and showed that in many ways 

(∗) provides a better model for waiting times and survival times 

data than the exponential distribution. This distribution 

provides a fits better to the empirical data, which considered all 

the negative binomial distributions and Hermit. Recently, a 

good part of attention was paid to this probability density 

function (pdf) in the statistic literature. For example, Ghitany et 

al. (2008) and Al-Mutairi and Ghitany (2009) studied the 

distribution of certain properties of discrete Poisson-Lindley 

proposed Sankaran (1970). Recently, this work was extended 

by Mahmoudi and Zakerzadeh (2010). Other articles on this 

continuous distribution include Hernndez Bastida et al. (2011) 
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and Gmez-Déniz and Caldern-Ojeda [4]. Ghitany et al. [8] 

developed a two-parameter weighted Lindley distribution and 

discussed its applications to survival data. Recently, 

Zakerzadah and Dolati [21] and Elbatal et al. [6] have 

discussed  its applications to survival data. Recently, 

Zakerzadah and Dolati [21] and Elbatal et al. [6] have obtained 

the generalized Lindley distribution and the Kumaraswamy 

Quasi Lindley distribution, respectively.   In this article, we 

study the estimation of the generalized Lindley distribution 

which  depends two parameters with type II censored data. 

Two approaches are proposed, the first is the classical 

maximum likelihood estimation (MLE). The second is the 

Bayesian procedure performed under three loss function 

(Quadratic, entropy and linex). Using an exhaustive Monte 

Carlo study, these three Bayesian estimators are compared to 

the maximum likelihood estimator (MLE) using Pitman 

closeness criterion and the integrated mean square error 

(IMSE). 

The rest of this paper is organized as follows. In Section 2, 

we define the model. The section 3, study estimating 

parameters by the classical maximum likelihood estimation 

(MLE) with type II censored data. In Section 4, the Bayesian 

procedure performed under three loss function. In section 5, 

we are interested in the simulation study and the comparison 

between the two approaches presiding in the case of date 

censored type II, using the criterion of Pitman and the 

Integrated Mean Square Error. An application with real data 

was provided in section 6. 

II. THE MODEL 

    A model of Lindley a two parameters generalized (LG) is be 

defined by Shanker and al. (2013): 

                 
           

            (1) 

                                                                       

                      The distribution function is defined as follows: 
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III. MAXIMUM LIKELIHOOD ESTIMATORS 

       In this section we obtain the maximum likelihood estimates 

(MLE) parameters of the generalized law Lindley, we use type II   

censored data. 

         Consider a n-sample  generated from (1).   

Let , m-censured sample from (1)   

m∈{1,2,3,.....,n},  the    likelihood is then given n data censored  

type II, the    sample m size, probability  function can 

be constructed as follows: 

         
      with ₁≤ ₂≤...... ≤   .The likelihood function (1) can be  

written: 

 

        

 

       

             To    

 

  We set   and  the corresponding   

logarithm is : 

 

          

   
                            

 

  The likelihood function is: 

  

            
   

The MLE estimators of the two parameters  are solutions of       

the vectorial equation  

    Then, the likelihood equations are as follows: 

 

 

 

 

 

 

 

 

 
 

The system of equations (6) cannot be solved directly, we can    

use an iterative method .We then obtained  .                                              

In this paper, we will use the R package BB which has high   

capabilities for solving a nonlinear system of  equations (Vara  

han and  Gilbert, 2009). 

 

 

IV. BAYESIAN ESTIMATION UNDER DIFFERENT LOSS 

FUNCTIONS 

a- Prior and Posterior distributions      

In the presence of a priori information on the settings,   it can   

be assumed that the parameter  follows a law  density 

 and the parameter  admits prior density . 

Moreover  and  are independent. 

 

             
  The posterior density is then written: 

     

       
 

        

b- Loss function 

    We consider in this work three loss functions (Quadratic, 

Linex, entropy). 

Under quadratic loss function; Bayesian estimators of  θ  and  β  

noted  by  respectively ,  match their medium a 

posteriori, are: 
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    The corresponding Posterior risks are then: 

                           

                       

      

  With loss of function Entropy Bayesian estimators of                              

and   noted by respectively   and   defined as: 

                  

                            

 

         The posterior risks are: 

             

            

 

      Under the Linex loss function, the Bayesian estimators                       

of   and  noted by respectively  and  defined as: 

 

            ) 

            ) 

To proceed to the calculation by simulation, the recommended 

method is the particular method MCMC as the Metropolis-

Hastings algorithm. 

V. SIMULATIONS 

    In this section, we are interested in the simulation study. 

This study for the parameters estimates  function, 

which developed in the previous sections. The estimate of 

maximum likelihood and Bayesian by the three loss functions 

(Quadratic-Entropy-Linex) are obtained for censored type II 

data. All calculations are performed on R 3.1.3. We took 

three sample sizes:  (i) the small sample size n=10,      (ii) 

moderate sample size n=30 and (iii) large sample size n=100 

and . For each combination  we 

generated N=5000 and calculate the maximum likelihood 

estimators and Bayes by the three loss function (Quadratic-

Entropy-Linex) of , we propose to perform a Monte 

Carlo study assuming that , we obtain the 

following results. 

 

a- Likelihood estimation 

We used the R 3.1.3 package BB which presents very  high  

performances for nonlinear  systems. The results are as                                            

follows: 

 

 

 

 

 

n m           
10 10 1.04484(0.011338) 0.48783(0.02046) 

 8 0.987191(0.16938) 0.43010(0.02469) 

 5 0.79549(0.33932) 0.36819(0.20081) 

30 30 1.00416(0.02048) 0.485222(0.01148) 

 24 0.94029(0.04385) 0.44499(0.01856) 

 15 0.83036(0.11811) 0.42870(0.01994) 

100 100 1.00444(0.00447) 0.50399(0.00555) 

 80 0.942841(0.01458) 0.49637(0.01791) 

 50 0.78915(0.08105) 0.47399(0.01791) 

   Table1: The MLE of the parameters with Quadratic Error. 

 

b- Bayesian estimation 

    The Bayesian estimators are obtained with performing the 

MCMC methods. Table 2 presents the Bayesian estimations 

with quadratic loss function and the corresponding posterior 

risk. 

  - With the entropy loss function, we obtain the following   

(table 3).     

- Under the linex loss function, the results are given in table 4 

- Noting that the best Bayesian estimators, in the sense of the 

smallest square errors are obtained with a pert Linex function                        

or entropy with p=-0.5 and a=-0.5.  

 

n m                                               

 

                   

10 10 1.03167(0.04820) 0.54559(0.05771) 

 8 0.99542(0.00446) 0.49602(0.00438) 

 5 0.96524(0.00616) 0.46544(0.00605) 

30 30 0.98352(0.00350) 0.46622(0.00320) 

 24 1.03851(0.00360) 0.53861(0.00355) 

 15 0.96043(0.00332) 0.46203(0.00310) 

100 100 1.00891(0.00743) 0.559007(0.00668) 

 80 0.92410(0.00342) 0.43010(0.00319) 

 50 0.90983(0.00466) 0.41263(0.00374) 

Table2: Bayesian estimation of the parameters under Quadratic 

                                    Loss Function 
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n m P=-2 P=-0.5 P=0.5 P=2 

  
        

10 10 

 

8 

 

5 

1.03064 

0.00737 

0.93935 

0.00165 

 

0.92634 

0.00159 

0.54749 

0.02491 

 

0.44036 

0.00744 

 

0.42743 

0.00736 

1.02777 

0.00044 

 

0.93876 

0.00010 

 

0.92579 

0.00009 

0.54231 

0.00147 

 

0.43913 

0.00045 

 

0.42625 

0.00045 

1.02595 

0.00043 

 

0.93838 

0.00010 

 

0.92542 

0.00009 

0.53916 

0.00143 

 

0.43833 

0.00045 

 

0.42547 

0.00045 

1.02338 

0.00676 

 

0.93781 

0.00162 

 

0.92488 

0.00157 

0.53483 

0.02185 

 

0.43716 

0.00714 

 

0.42432 

0.00725 

 30 

 

 

24 

 

 

15 

 

1.00449 

0.00534 

 

0.97090 

0.00410 

 

0.95153 

0.00325 

0.50653 

0.02051 

 

0.47336 

0.01652 

 

0.45625 

0.01303 

1.00245 

0.00031 

 

0.96938 

0.00024 

 

0.95036 

0.00019 

0.50255 

0.00118 

 

0.47037 

0.00095 

 

0.45397 

0.00076 

1.00119 

0.00031 

0.96844 

0.00023 

 

0.94962 

0.00019 

0.50022 

0.00113 

 

0.46861 

0.00091 

 

0.45262 

0.00073 

0.99942 

0.00477 

 

0.96713 

0.00368 

 

0.94858 

0.00296 

0.49712 

0.01696 

 

0.46627 

0.01368 

 

0.45078 

0.01106 

 100 

 

 

80 

 

 

50 

 

0.97433 

0.01351 

 

0.96158 

0.00383 

 

0.94370 

0.00286 

0.52481 

0.01346 

 

0.46359 

0.00368 

 

0.45758 

0.00387 

0.96919 

0.00080 

 

0.96012 

0.00022 

 

0.94261 

0.00016 

0.51969 

0.00080 

 

0.46219 

0.00021 

 

0.45609 

0.00022 

0.96600 

0.00078 

 

0.95922 

0.00022 

 

0.94194 

0.00016 

0.51651 

0.00078 

 

0.46132 

0.00021 

 

0.45520 

0.00021 

0.96153 

0.01208 

 

0.95797 

0.00338 

 

0.94101 

0.00251 

0.51206 

0.01204 

 

0.46012 

0.00326 

 

0.45398 

0.00330 

Table3: Bayesian estimation and PR under entropy loss function  

 

n m a=-2 a=-0.5 a=0.5 a=2 

  
        

10 10 

 

8 

 

 

5 

1.03294 

0.00848 

 

0.93970 

0.00148 

 

0.92666 

0.00139 

0.54804 

0.00814 

 

0.44027 

0.00147 

 

0.42467 

0.00137 

1.02972 

0.00202 

 

0.93914 

0.00092 

 

0.92346 

0.00008 

0.54494 

0.00194 

 

0.43972 

0.00091 

 

0.42415 

0.00008 

1.02772 

0.00049 

 

0.93878 

0.00091 

 

0.92311 

0.00008 

0.54302 

0.00047 

 

0.43935 

0.00090 

 

0.42381 

0.00008 

1.02492 

0.00756 

 

0.93823 

0.00145 

 

0.92259 

0.00138 

0.54033 

0.00727 

 

0.43882 

0.00143 

 

0.4233 

0.00136 

 30 

 

 

24 

 

 

15 

 

1.02025 

0.00697 

 

1.00784 

0.00784 

 

0.98061 

0.00607 

0.50094 

0.00691 

 

0.50903 

0.00771 

 

0.48304 

0.00582 

1.01759 

0.00041 

 

1.00484 

0.00045 

 

0.97829 

0.00035 

0.49830 

0.00040 

 

0.50607 

0.00045 

 

0.48082 

0.00034 

1.01597 

0.00039 

 

1.00304 

0.00043 

 

0.97688 

0.00034 

 0.49670 

0.00039 

 

0.50430 

0.00043 

 

0.47947 

0.00033 

1.01376 

0.00601 

 

1.00060 

0.00665 

 

0.97492 

0.00530 

0.49450 

0.00595 

 

0.50190 

0.00654 

 

0.47759 

0.00508 

 100 

 

 

80 

 

 

50 

 

0.97433 

0.01351 

 

0.96158 

0.00383 

 

0.94370 

0.00286 

0.52481 

0.01346 

 

0.46359 

0.00368 

 

0.45758 

0.00387 

0.96919 

0.00080 

 

0.96012 

0.00022 

 

0.94261 

0.00016 

0.51969 

0.00080 

 

0.46219 

0.00021 

 

0.45609 

0.00022 

0.96600 

0.00078 

 

0.95922 

0.00022 

 

0.94194 

0.00016 

0.51651 

0.00078 

 

0.46132 

0.00021 

 

0.45520 

0.00021 

0.96153 

0.01208 

 

0.95797 

0.00338 

 

0.94101 

0.00251 

0.51206 

0.01204 

 

0.46012 

0.00326 

 

0.45398 

0.00330 

Table4 : Bayesian estimation of the parameters and PR under  the Linex loss function 
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c- Comparison with the maximum likelihood 

 Estimator 
    In this section, we propose to compare the best Bayesian   

estimators previously with the maximum likelihood estimator. For 

this, we propose  to use the following criterions: the Pitman 

closeness ( Pitman,  1937,  Fuller, 1982 and Jozani, 2012) and the 

integrated mean square error   (IMSE) defined as follows:    

 Definition 1: An estimator  of a parameter  dominates                             

in the sense of Pitman closeness criterion another estimator ,  

    if for all                                                                      

  Consider the estimates  (i=1,....,N) obtained   with 

N samples of the model.  

Definition 2: The integrated mean square error is defined as:                     

 

- In the following, we present the values of the Pitman 

probabilities which allows us to compare the MLE with Bayesian   

estimators under the three loss function p= -0.5 and a=-0.5. 

    - As we can see in table 5, when the probability is greater than    

0.5, the Bayesian estimator is better than the MLE estimator. 

   - Table 6 presents the values of integrated mean square error  

(IMSE) of the Bayesian estimators of the  parameters under the  

three loss function and the maximum likelihood estimators. 

 

n m Quadra tique Entropy p  0.5 Linex a  0.5

     

10 10

8

5

0.9162

0.9648

0.9654

0.8686

0.8448

0.9458

0.9378

0.958

0.971

0.9312

0.838

0.97

0.9928

0.9962

0.9962

0.8992

0.8458

0.9562

30 30

24

15

0.8838

0.9186

0.929

0.851

0.757

0.7854

0.8812

0.9206

0.9234

0.8444

0.7488

0.7706

0.9908

0.9946

0.9964

0.8504

0.7556

0.7816

100 100

80

50

0.672

0.7932

0.883

0.6962

0.7814

0.752

0.676

0.7922

0.8824

0.6706

0.7738

0.724

0.9836

0.9906

0.9964

0.6894

0.778

0.7422

 
Table5 :Comparison of the likelihood and Bayesian method                                               

approach with three  function  loss using criterion of pitman 

 

 

 

 

n m MLE Quad Entropy 0.5 Linex 0.5

       

10 10

8

5

0.12169

0.16783

0.24237

0.02915

0.02054

0.07900

0.00306

0.00092

0.00146

0.00308

0.00090

0.00143

0.00185

0.00085

0.00123

0.00128

0.00090

0.00118

0.00214

0.00085

0.00127

0.00215

0.00083

0.00124

30 30

24

15

0.02317

0.04366

0.11187

0.01203

0.01693

0.01978

0.00220

0.00237

0.00281

0.00219

0.00231

0.00265

0.00176

0.00208

0.00288

0.00156

0.00195

0.00293

0.00186

0.00214

0.00284

0.00185

0.00209

0.00272

100 100

80

50

0.00427

0.01470

0.06556

0.00639

0.02127

0.01840

0.00244

0.00331

0.00470

0.00241

0.00308

0.00392

0.00227

0.00332

0.00474

0.00217

0.00326

0.00433

0.00231

0.00330

0.00472

0.00229

0.00313

0.00404

 

Table6: The IMSE of the estimators of  θ,β. 

d- Conclusions of the simulation study 

    The results of the simulation study of the maximum likelihood                           

approach and the Bayesian approach (Metropolis-Hastings) by                           

the three loss functions (Quadratic-Entropy-Linex) are presented                                  

respect in (table1) and (tables 3,4,5) with the following  

Conclusions: 

    (i) It is noted that the estimates for complete samples MLE   

and Bayes by three loss of function of θ, β are nearly unbiased.   

It is also observed for complete sample estimators of 

parameters   MLE and Bayes θ, β are very good.                  

    (ii) It is observed that for the parameter estimates with type 

II censored samples by both methods (MLE, Bayes) is a can 

off.                                       

    (iii)  If we compare the two approach using criterion of 

pitman (table 5) notes that the Bayesian approach by the three 

loss   functions is the best by contributing to the likelihood 

method   and the linex loss function provides the best Bayesian 

estimator of . Also if we  compare the two approaches. 

using the IMSE (table 6), we note that all the Bayesian 

estimators are better than   the MLE estimators. 

VI. APPLICATION 

     In this section, the LG distribution is applied to real data in             

order to illustrate the usefulness and applicability of the model.                   

The data set repair times (hours) for an airborne communication 

transceiver discussed by Alven [1], Chhikara and Folks [3] and 

Dimitrakopoulou and al.[5]. 

 It consists of the observation listed below:   

0.2,0.3,0.5,0.5,0.5,0.5,0.6,0.6,0.7,0.7,0.7,0.8,0.8,1.0,1.0,1.0,1.0,1.1,

1.3,1.5,1.5,1.5,1.5,2.0,2.0,2.2,2.5,2.7,3.0,3.0,3.3,3.3,4.0,4.0,4.5,4.7,

5.0,5.4,5.4,7.0,7.5,8.8,9.0,10.3,22.0,24.5. 

    Estimates of the parameters of   by MLE and Bayesian 

with three loss functions are given in the table 8 for activity 

repair time data. 
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Bay Linex Bay Entropy Bay Quadratique MLE  

        
m n 

0.49206 

0.00077 

0.95869 

0.00001 

0.48777 

0.00026 

0.95865 

0.00001 

0.46658 

0.02464 

0.95042 

0.00714 

0.44648 

0.01103 

0.98905 

0.01365 

46 46 

0.42024 

0.00002 

0.91738 

0.00001 

0.42022 

0.00001 

0.91737 

0.00003 

0.41655 

0.00638 

0.91575 

0.00683 

0.46485 

0.01284 

0.95092 

0.02454 

38  

                               Table7 : Bayesian and likelihood estimation of the parameters   under three loss of functionn

  

n m Quadratique Entropy(p=-0.5) Linex(a=-0.5) 

         
46 46 

38 
0.794 
0.837 

0.797 
0.748 

0.759 
0.829 

0.815 
0.71 

0.984 
0.997 

0.811 
0.73 

                                                    Table8: Comparison of the likelihood and Bayesian method 

 

n m MLE Quadratique Entropy(p=-0.5) Linex(a=-0.5)  

           

46 46 

38 

0.02125 

0.02598 

0.00803 

0.01225 

0.00803 

0.00238 

0.01109 

0.00231 

0.00783 

0.00215 

0.0079 

0.00231 

0.0079 

0.00231 

0.00965 

0.00205 

Table9 : The IMSE of the estimators of θ,β 

 

 

- Conclusion of application 

             We use the data set repair times (hours) for an airborne 

communications to illustrate the use of estimation methods   

discussed in this paper. For complete sample case, the MLEs   

are   , . One other censoring scheme a 

  given in the second column. From these tables, we conclude   

that the Bayesian by the three loss function method is better than 

  the likelihood method. 

 

VII. CONCLUSION 

    In this paper, we propose a two parameters Lindley                             

distribution for data modeling. The parameters estimation was 

 performed by the maximum likelihood method and a Bayesian                

approach by three   loss function (Quadratic, Entropy, Linex)               

with type II censored  samples. These methods have been                                          

introduced using the  simulation of   different sample sizes.                   

We compared between the maximum likelihood method and the                                                                       

Bayesian approach using a criterion of Pitman and the integrated   

mean square error (IMSE).Finally, we  illustrate our Study by an 

example of real data. 
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